
UCRL-WEB-201386

SLURM Reference Manual

SLURM Reference Manual - 1

Table of Contents

Preface 3
Introduction 4
SLURM Goals and Roles 5

SLURM Goals 5
SLURM Roles 7

SLURM Features 9
SLURM Components 9

SLURMCTLD 9
SLURMD 11

Portability (Plugins) 12
User Impact 13

SLURM Operation 14
SLURM Utilities 14
SRUN (Submit Jobs) 15

SRUN Roles and Modes 15
Comparison with POE 17
SRUN Run-Mode Options 18
SRUN Resource-Allocation Options 20
SRUN Control Options 22
SRUN I/O Options 22
SRUN Constraint Options 22
Environment Variables 23

Disclaimer 24
Keyword Index 25
Alphabetical List of Keywords 26
Date and Revisions 27

SLURM Reference Manual - 2

Preface

Scope: This manual explains the design goals and unique roles of LC's locally developed
Simple Linux Utility for Resource Management (SLURM), intended as a customized
replacement for RMS or NQS in allocating compute resources (mostly nodes) to
queued jobs on machines running the CHAOS operating system. Sections describe
the features of both control daemon SLURMCTLD and local daemon SLURMD, as
well as SLURM's adaptability by means of plugin modules. The five SLURM user
utilities for querying and controlling jobs managed by SLURM are also introduced.
The features and options of SRUN, the tool used to launch both parallel interactive
and batch jobs under SLURM management, receive especially detailed treatment.

Availability: SLURM is part of the CHAOS project, and is available on selected large LC clusters
that run the CHAOS version of Linux.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

on the OCF: http://www.llnl.gov/LCdocs/slurm/slurm.pdf
on the SCF: https://lc.llnl.gov/LCdocs/slurm/slurm_scf.pdf

SLURM Reference Manual - 3

http://www.llnl.gov/LCdocs/slurm/slurm.pdf

Introduction
SLURM is LC's locally developed C-language Simple Linux Utility for Resource Management. SLURM

is a job- and compute-resource manager that can run reliably and efficiently on Linux (CHAOS) clusters
as large as several thousand nodes. Its features suit it to large-scale, high-performance computing
environments, and its design avoids known weaknesses (such as inflexibility or fault intolerance) in available
commercial resource management products for supercomputers.

This manual summarizes the specific service goals that SLURM was developed to meet, and explains
the roles that it plays (relative to LC's Distributed Production Control System, for example) on LC production
machines. Key to SLURM's operation are two software daemons: one (SLURMCTLD) controls the job
queue and resource allocations, while the other (SLURMD) shepherds executing jobs on each compute
node. Sections below explain the features and subsystems of each SLURM daemon. Additional sections
tell how use of "plugin modules" make SLURM easily adaptable to many hardware situations, and introduce
the five utility programs that give SLURM its direct user interface.

SRUN is the SLURM utility central to launching, assigning resources to, and guiding the execution of
parallel jobs managed by SLURM, both interactively and through batch queues. Hence, the five ways to
use SRUN (its "modes") and the often-elaborate interaction among the many SRUN options receive careful
attention in several subsections devoted to that tool. SRUN also interacts with a set of special SLURM
environment variables (like those used for job management by IBM's POE), explained in another subsection.

SLURM development is part of LC's larger CHAOS open-source operating system project, as explained
in the separate CHAOS Reference Manual. (URL: http://www.llnl.gov/LCdocs/chaos) For a summary of
known, significant differences between LC's Linux machines and those running AIX or Tru64 Unix, see
the Linux Differences (URL: http://www.llnl.gov/LCdocs/linux) guide. And for general advice on managing
(batch) jobs on LC production machines, consult the examples and comparisons in the basic
EZJOBCONTROL (URL: http://www.llnl.gov/LCdocs/ezjobcontrol) guide.

SLURM Reference Manual - 4

http://www.llnl.gov/LCdocs/chaos
http://www.llnl.gov/LCdocs/linux
http://www.llnl.gov/LCdocs/ezjobcontrol

SLURM Goals and Roles

SLURM Goals
SLURM was developed specifically to meet locally important criteria for a helpful, efficient way to

manage compute resources on large (Linux/CHAOS) clusters. The primary threefold purpose of a cluster
resource manager (such as LoadLeveler on LC's IBM ASCI machines or the Resource Management System
(RMS) from Quadrics) is to:

• Allocate nodes--
give users access (perhaps even exclusive access) to compute nodes for some specified time range
so their job(s) can run.

• Control job execution--
provide the underlying mechanisms to start, run, cancel, and monitor the state of parallel (or serial)
jobs on the nodes allocated.

• Manage contention--
reconcile competing requests for limited resources, usually by managing a queue of pending jobs.

At LC, an adequate cluster resource manager needs to meet two general requirements:

• Scalable--
It must operate well on clusters with as many as several thousand nodes, including cases where the
nodes are heterogeneous (with different hardware or configuration features).

• Portable--
It must ultimately support jobs on clusters that have different operating systems or versions, different
architectures, different vendors, and different interconnect networks. Linux/CHAOS is, of course,
the intended first home for this software, however.

Any LC resource manager must also meet two additional, locally important, requirements:

• Compatible with DPCS--
Since a resource manager is not a complex scheduler nor a complete batch system with across-cluster
accounting and reporting features, it must support and work well within such a larger, more
comprehensive job-control framework. At LC, the Distributed Production Control System (DPCS)
(URL: http://www.llnl.gov/LCdocs/dpcs) provides that framework (see also the next section (page
7)).

• Compatible with QsNet--
Since LC's Linux Project has already refined QsNet as its preferred high-speed interconnect for
Linux/CHAOS clusters, an adequate resource manager must also allocate Quadrics QsNet resources
along with compute nodes. But conversely, interconnect independence and the ability to easily support
other brands of interconnect (such as Myrinet) is important too. Such independence allows great
flexibility in pursuing new hardware configurations in future clusters.

Finally, to fit well into LC's emerging CHAOS environment, a resource manager should ideally have
these three very beneficial extra properties as well:

SLURM Reference Manual - 5

http://www.llnl.gov/LCdocs/dpcs

• Fault Tolerant--
Innovative scientific computing systems are often much less stable than routine business clusters,
so a good local resource manager should recover well from many kinds of system failures (without
terminating its workload), including failure of the node where its own control functions execute.

• Open Source--
The software (source code) should be freely sharable under the GNU General Public License, as
with other nonproprietary CHAOS components.

• Modular--
An approach that clearly separates high-level job-scheduling functions from low-level
cluster-administration functions allows for easier changes in scheduling policy without having to
sacrifice working, familiar cluster-resource tools or features.

No commercial (or existing open source) resource manager meets all of these needs. So since 2001
Livermore Computing, in collaboration with Linux NetworX and Brigham Young University, has developed
and refined the "Simple Linux Utility for Resource Management" (SLURM).

SLURM Reference Manual - 6

SLURM Roles
SLURM fills a crucial but mostly hidden role in running large parallel programs on large clusters.

Most users who run batch jobs at LC use job-control utilities (such as PSUB or PALTER) that talk to
DPCS (the Distributed Production Control System), LC's locally designed metabatch system. DPCS:

• Provides a common user interface for batch-job submittal across all LC machines and clusters.

• Monitors resource use across machines and clusters.

• Implements bank-based fair-share scheduling policy, again, across all LC production machines.

To carry out its scheduling decisions, DPCS relies on the native resource manager on each machine
or cluster where it assigns batch jobs to run. The basic duties of such a native resource manager are to:

• Get and share information on resource (chiefly node) availability.

• Allocate compute resources (chiefly, nodes or processors).

• Shepard jobs as their tasks execute.

On IBM machines, LoadLeveler serves as the native resource manager. On LC's nonIBM machines,
DPCS relies on one of three other native resource managers to provide low-level job control:

• RMS (Resource Management System), used on "capability" clusters (devoted to one or two users at
a time).

• NQS (Network Queueing System), used on "capacity" clusters (devoted to many simultaneous users).

• SLURM (newly introduced and still evolving to meet specific LC needs).

The key differences among these alternatives appear in this table:

SLURM Reference Manual - 7

SLURMNQSRMS
No, open sourceYesYesProprietary?
Either,
interconnect
independent

Machines without
QsNet

Machines with
QsNet
interconnect

Used on:

Either with
CHAOS

Capacity clustersCapability clustersSuited for:

Either possibleMultiple jobs per
node

Whole nodes
allocated to jobs

Node allocation:

SLURM Reference Manual - 8

SLURM Features

SLURM Components
SLURM consists of two kinds of daemon (discussed here) and five command-line user utilities (next

section (page 14)), whose relationships appear in this simplified architecture diagram:

user>>SRUN -| -------------
 | | |
 SCANCEL-|--------| SLURMCTLD |--------| SCONTROL
 | | |
 SQUEUE -| -------------
 | |
 SINFO -| ---------------------
 | | |
 SLURMD SLURMD SLURMD
 (...compute nodes...)

SLURMCTLD

SLURM's central control daemon is called SLURMCTLD. Unlike the Portable Batch System daemon,
SLURMCTLD is multi-threaded, so some threads can handle problems without delaying service to
continuing normal jobs that also need attention. SLURMCTLD runs on a single management node (with
a fail-over spare copy elsewhere for safety), reads the SLURM configuration file, and maintains state
information on:

• nodes (the basic compute resource),

• partitions (logically disjoint sets of nodes),

• jobs (or resource allocations to run jobs for a time period), and

• job steps (parallel tasks within a job).

The SLURMCTLD daemon in turn consists of three software subsystems, each with a specific role:

Node Manager

 monitors the state and configuration of each node in the cluster. It receives state-change
messages from each compute node's SLURMD daemon asynschonously, and it also
actively polls those daemons periodically for status reports.

Partition Manager

 groups nodes into disjoint sets (partitions) and assigns job limits and access controls
to each partition. The partition manager also allocates nodes to jobs (at the request
of the Job Manager, below) based on job and partition properties. SCONTROL is the
(privileged) user utility that can alter partition properties.

SLURM Reference Manual - 9

Job Manager accepts job requests (from SRUN or a metabatch system like DPCS), places them in
a priority-ordered queue, and reviews that queue periodically or when any state change
might allow a new job to start. Qualifying jobs are allocated resources and that
information transfers to (SLURMD on) the relevant nodes so the job can execute.
When all nodes assigned to a job report that their work is done, the Job Manager
revises its records and reviews the pending-job queue again.

SLURM Reference Manual - 10

SLURMD

The SLURMD daemon runs on every compute node of every cluster that SLURM manages and it
performs the lowest level work of resource management. Like SLURMCTLD (above), SLURMD is
multi-threaded for efficiency, but unlike SLURMCTLD it runs with root privilege (so it can initiate jobs
on behalf of other users).

SLURMD carries out five key tasks and has five corresponding subsystems:

Machine Status

 responds to SLURMCTLD requests for machine state information and sends
asynchronous reports of state changes to help with queue control.

Job Status responds to SLURMCTLD requests for job state information and sends asynchronous
reports of state changes to help with queue control.

Remote Execution

 starts, monitors, and cleans up after a set of processes (usually shared by a parallel
job), as decided by SLURMCTLD (or by direct user intervention). This often involves
many process-limit, environment-variable, working-directory, and user-id changes.

Stream Copy Service

 handles all STDERR, STDIN, and STDOUT for remote tasks. This may involve
redirection, and it always involves locally buffering job output to avoid blocking local
tasks.

Job Control propagates signals and job-termination requests to any SLURM-managed processes
(often interacting with the Remote Execution subsystem).

SLURM Reference Manual - 11

Portability (Plugins)
SLURM achieves portability (hardware independence) by using a general plugin mechanism. SLURM's

configuration file tells it which plugin modules to accept.

A SLURM plugin is a dynamically linked code object that the SLURM libraries load explicitly at run
time. Each plugin provides a customized implementation of a well-defined API connected to some specific
tasks.

By means of this plugin approach, SLURM can easily change its:

• interconnect support (default is Quadrics QsNet).

• security techniques (default is to use crypto techniques to authenticate services to users and to each
other).

• metabatch scheduler (default is LC's DPCS, with a "Grid" resource broker as an easy alternative).

• between-node communication "layers" (default is Berkeley sockets).

SLURM Reference Manual - 12

User Impact
The primary SLURM job-control tool is SRUN, (page 15) which fills the general role of PRUN (on

former Compaq machines) or POE (on IBM computers). Your choice of run mode ("batch" or interactive)
and your allocation of resources with SRUN strongly affect your job's behavior on machines where SLURM
manages parallel jobs.

[Other specific user impacts coming soon here.]

SLURM Reference Manual - 13

SLURM Operation

SLURM Utilities
SLURM's five command-line utilities provide its direct interface for users (while DPCS utilities, as

explained in EZJOBCONTROL (URL: http://www.llnl.gov/LCdocs/ezjobcontrol), provide an indirect
interface). These utilities are:

SRUN submits jobs to run under SLURM management. SRUN can
(A) submit a batch job and then terminate, or
(B) submit an interactive job and then persist to shepherd the job as it runs, or
(C) allocate resources to a shell and then spawn that shell for use in running subordinate
jobs.
SLURM associates every set of parallel tasks ("job steps") with the SRUN instance
that initiated that set.

SQUEUE displays the queue of runing and waiting jobs (or "job steps"), including the JobId
(used for SCANCEL), and the nodes assigned to each running job.

SINFO displays a summary of available partition and node (not job) information (such as
partition names, nodes/partition, and CPUs/node).

SCANCEL cancels a running or waiting job, or sends a specified signal to all processes on all
nodes associated with a job (only job owners or their administrators can cancel their
jobs).

SCONTROL (privileged users only) manages available nodes (for example, by "draining" jobs
from a node or partition to prepare it for servicing).

SLURM Reference Manual - 14

http://www.llnl.gov/LCdocs/ezjobcontrol

SRUN (Submit Jobs)

SRUN Roles and Modes

SRUN executes tasks ("jobs") in parallel on multiple compute nodes at the same time (on machines
where SLURM manages the resources). SRUN options let you both:

• Specify the parallel environment for your job(s), such as the number of nodes used, node partition,
distribution of processes among nodes, and total time, and also

• Control the behavior of your parallel job as it runs, such as by redirecting or labeling its output,
sending it signals, or specifying its reporting verbosity.

Because it performs several different roles, SRUN can be used in five distinct ways or "modes":

• SIMPLE.
The simplest way to use SRUN is to distribute execution of a serial program (such as a UNIX utility)
across a specified number or range of compute nodes. For example,

srun -N 8 cp ~/data1 /var/tmp/data1
copies (CP) file data1 from your common home directory into local disk space on each of eight
compute nodes. This is very like running simple programs in parallel under AIX by using IBM's
POE command (except that SRUN lets you set relevant environment variables on its own execute
line, unlike POE). In simple mode, SRUN submits your job to the local SLURM job controller,
initiates all processes on the specified nodes, and blocks until needed resources are free to run the
job if necessary. Many control options can change the details of this general pattern.

• BATCH (WITHOUT DPCS/LCRM).
SRUN can also directly submit complex scripts to the job queue(s) managed by SLURM for later
execution when needed resources become available and when no higher priority jobs are pending.
For example,

srun -N 16 -b myscript.sh
uses SRUN's -b option to place myscript.sh into the batch queue to later run on 16 nodes. Scripts in
turn normally contain either MPI programs or other, simple invocations of SRUN itself (as shown
above). SRUN's -b option thus supports basic, local batch service even on machines where LC's
metabatch system DPCS/LCRM has not yet been installed (see below).

• ALLOCATE.
To combine the job complexity of scripts with the immediacy of interactive execution, you can use
SRUN's "allocate" mode. For example,

srun -A -N 4 myscript.sh
uses SRUN's (uppercase) -A option to allocate specified resources (here, four nodes), spawn a subshell
with access to those resources, and then run multiple jobs using simple SRUN commands within the
specified script (here, myscript.sh) that the subshell immediately starts to execute. This is very like
allocating resources by setting AIX environment variables at the beginning of a script, and then using
them for scripted tasks. No job queues are involved.

SLURM Reference Manual - 15

• ATTACH.
You can monitor or intervene in an already running SRUN job, either batch (started with -b) or
interactive ("allocated," started with -A), by executing SRUN again and "attaching" (-a, lowercase)
to that job. For example,

srun -a 6543 -j
forwards the standard output and error messages from the running job with SLURM ID 6543 to the
attaching SRUN to reveal the job's current status, and (with -j, lowercase) also "joins" the job so that
you can send it signals as if this SRUN had initiated the job. Omit -j for read-only attachments.
Because you are attaching to a running job whose resources have already been allocated, SRUN's
resource-allocation options (such as -N) are incompatible with -a.

• BATCH (WITH DPCS/LCRM).
On machines where LC's metabatch job-control and accounting system DPCS/LCRM is installed,
you can submit (with the DPCS/LCRM utility PSUB) a script to DPCS that contains (simple) SRUN
commands within it to execute parallel jobs later, after DPCS applies the usual fair-share scheduling
process to your job and its competitors. Here DPCS/LCRM takes the place of SRUN's -b option for
indirect, across-machine job-queue management.

SRUN SIGNAL HANDLING.
Signals sent to SRUN are automatically forwarded to the tasks that SRUN controls, with a few special
cases. SRUN handles the sequence CTRL-C differently depending on how many it receives in one second:

 CTRL-Cs within one second

 First reports the state of all tasks
 associated with SRUN.
 Second sends SIGINT signal to all
 associated SRUN tasks.
 Third terminates the job at once,
 without waiting for remote tasks
 to exit.

MPI SUPPORT.
On computer clusters with a Quadrics interconnect among the nodes (such as Adelie and Emperor on SCF,
or MCR and ALC on OCF) SRUN directly supports the Quadrics version of MPI without modification.
Applications built using the Quadrics MPI library communicate over the Quadrics interconnect without
any special SRUN options.

You may also use MPICH on any computer where it is available. MPIRUN will, however, need
information on its command line identifying the resources to use, namely

 -np SLURM_NPROCS -machinefile filename

where SLURM_NPROCS is the environment variable that contains the (-n) number of processors to use
and filename lists the names of the nodes on which to execute (the captured output from /bin/hostname
run across those nodes with simple SRUN). Sometimes the MPICH vendor configures these options
automatically.

SLURM Reference Manual - 16

Comparison with POE

SRUN and AIX's POE (Parallel Operating Environment) both use UNIX environment variables to
manage the resources for each parallel job that they run. Of course, variables with comparable roles have
different names under each system (and both systems have many other environment variables for other
purposes too).

Two differences in detail between environment-variable use by SRUN and POE are noteworthy:

• SRUN assigns values to its resource-management variables by means of its own interactive options,
one option for each environment variable (plus extra control options, such as -j). Instead, POE uses
the usual SETENV or EXPORT utilities to assign values to its environment variables.

• POE's LoadLeveler ignores many environment variables when it run batch jobs under AIX on LC
machines. SLURM does not ignore the corresponding environment variables when set by SRUN,
even for batch runs.

This chart lists the SLURM (SRUN-set or inferred) resource-management environment variables for
which direct POE counterparts exist. For an explanatory inventory of all SLURM environment variables,
see the separate section (page 23) below.

POE
Variable
Name

SLURM
Variable
Name

SRUN
Option
To Set

Environment
Variable
Role

MP_PROCS(*)SLURM_NPROCS-nTotal processes to run
MP_NODES(*)SLURM_NNODES-NTotal nodes allocated
MP_SAVEHOSTFILE(*)SLURM_NODELIST(inferred)Node list for this job
MP_CHILDSLURM_PROCID(inferred)MP ID of current

process
MP_STDOUTMODESLURM_STDOUTMODE-o (lc)Output mode choice
MP_RMPOOL(*)SLURM_PARTITION-pPartition for this job
MP_INFOLEVELSLURMD_DEBUG-dDebug message level
MP_INFOLEVELSLURM_DEBUG-v (lc)Output message level
MP_LABELIOSLURM_LABELIO-lOutput label choice

(*)Ignored by LoadLeveler for batch jobs on AIX machines at LC.

SLURM Reference Manual - 17

SRUN Run-Mode Options

For a strategic comparison (with examples) of the five different ways to use SRUN, see "SRUN Roles
and Modes," above. (page 15) This section explains the mutually exclusive SRUN options that enable its
different run modes. Each option has a one-character (UNIX) and a longer (Linux) alternative syntax.

-b (--batch) runs a script (whose name appears at the end of the SRUN execute line, not as an
argument to -b) in batch mode. You cannot use -b with -A or -a.

RESULT.
SRUN copies the script, submits the request to run (with your specified resource
allocation) to the local SLURM-managed job queue, and ends. When resources become
available and no higher priority job is pending, SLURM runs the script on the first
node allocated to the job, with STDIN redirected from /dev/null and STDOUT and
STDERR redirected to a file called jobname.out in the current working directory
(unless you request a different name or a more elaborate set of output files by using
-J or -o). In other words, -b executes the script through a queue, unhooked from
terminal interaction, but not under DPCS/LCRM control.

SCRIPT REQUIREMENTS.
(1) You must use the script's absolute pathname or a pathname relative to the current
working directory (SRUN ignores your search path).
(2) SRUN interprets the script using your default shell unless the file begins with the
character pair #! followed by the absolute pathname of a valid shell.
(3) The script must contain MPI commands or other (simple) SRUN commands to
initiate parallel tasks.

-A (uppercase, --allocate)

 allocates compute resources (as specified by other SRUN options) and starts ("spawns")
a subshell that has access to those allocated resources. No remote tasks are started.
You cannot use -A with -b or -a.

SCRIPTED USE.
If you specify a script at the end of SRUN's execute line (not as an argument to -A),
the spawned shell executes that script using the allocated resouces (interactively,
without a queue). See the -b option for script requirements.

UNSCRIPTED USE.
If you specify no script, you can then execute other instances of SRUN interactively,
within the spawned subshell, to run multiple parallel jobs on the resources that you
allocated to the subshell. The resources (nodes, etc.) will only be freed for other jobs
when you terminate the subshell.

-a jobid (lowercase, --attach=jobid)

 attaches (or reattaches) your current SRUN session to the already running job whose
SLURM ID is jobid. The job to which you attach must have its resources managed

SLURM Reference Manual - 18

by SLURM, but it can be either interactive ("allocated," started with -A) or batch
(started with -b). This option allows you to monitor or intervene in previously started
SRUN jobs. You cannot use -a with -b or -A. Because the running job to which you
attach already has its resources specified, you cannot use -a with -n, -N, or -c. You
can only attach to jobs for which you are the authorized owner.

READ-ONLY.
By default, -a attaches to the designated job read-only. STDOUT and STDERR are
copied to the attaching SRUN, just as if the current SRUN session had started the job.
However, signals are not forwarded to the remote processes (and a single CTRL-C
will detach the read-only SRUN from the job).

READ-WRITE.
If you use -j (--join) or -s (--steal) along with -a, your SRUN session "joins" the
running job and can also forward signals to it as well as receive STDOUT and
STDERR from it. If you join a SLURM batch (-b) job, you can send signals to its
batch script. Join (-j) does not forward STDIN, but steal (-s, which closes other open
sessions with the job) does forward STDIN as well as signals.

-j (--join) joins a runing SLURM job (always used only with -a, --attach, to specify the jobid).
This not only duplicates STDOUT and STDERR to the attaching SRUN session, but
it also forwards signals to the job's script or processes as well.

-s (--steal) steals all connections to a running SLURM job (always used only with -a, --attach,
to specify the jobid). STEAL closes any open sessions with the specified job, then
copies STDOUT and STDERR to the attaching SRUN session, and it also forwards
both signals and STDIN to the job's script or processes.

SLURM Reference Manual - 19

SRUN Resource-Allocation Options

These SRUN options (used alone or in combination) assign compute resources to your parallel
SLURM-managed job. Each option has a one-character (UNIX) and a longer (Linux) alternative syntax.

-n procs (lowercase, --nprocs=procs)

 requests that SRUN execute procs processes. To control how these processes are
distributed among nodes and CPUs, combine -n with -c or -N as explained below
(default is one process per node).

-N n (uppercase, --nodes=n)

 allocates at least n nodes to this job, where n may be either
(1) a specific node count (such as -N 16), or
(2) a hyphen-separated range from a minimum to a maximum node count (such as
-N 2-4).
If the nodes are partitioned, each partition's node limits supersede those specified by
-N (jobs that request more nodes than the partition allows never leave the PENDING
state). To change partitions, use SRUN's -p option (below). Combinations of -n and
-N control how job processes are distributed among nodes according to the SRUN
policies listed here:

-n/-N COMBINATIONS.
SRUN infers your intended number of processes per node if you specify both the
number of processes and the number of nodes for your job. Thus -n 16 -N 8 normally
results in running 2 processes/node (but see the next policy for exceptions).

MINIMUM INTERPRETATION.
SRUN interprets all node requests as minimum node requests (so -N 16 means "at
least 16 nodes"). If some nodes lack enough CPUs to cover the process count specified
by -n, SRUN will automatically allocate more nodes (than mentioned with -N) to
meet the need (for example, if not all nodes have 2 working CPUs, then -n 32 -N 16
together will allocate more than 16 nodes so that all processes are supported). The
actual number of nodes assigned (not the number reqested) is stored in environment
variable SLURM_NNODES.

CPU OVERCOMMITMENT.
By default, SRUN never allocates more than one process per CPU. If you intend to
assign multiple processes per CPU, you must invoke SRUN's -O (uppercase oh) option
along with -n and -N (thus -n 16 -N 4 -O together allow 2 processes/CPU on the 4
allocated 2-CPU nodes).

INCONSISTENT ALLOCATION.
SRUN rejects as errors inconsistent -n/-N combinations. For example, -n 15 -N 16
requests the impossible assignment of 15 processes to 16 nodes.

SLURM Reference Manual - 20

-c cpt (lowercase, --cpus-per-task=cpt)

 assigns cpt CPUs per process for this job (default is one CPU/process). This option
supports multithreaded programs that require more than a single CPU/process for
best performance.

-n/-c COMBINATIONS.
For multithreaded programs where the density of CPUs is more important than a
specific node count, use both -n and -c on the same SRUN execute line (rather than
-N). Thus -n 16 -c 2 results in whatever node allocation is needed to yield the requested
2 CPUs/process. This is the reverse of CPU overcommitment (see -N and -O).

-p part (lowercase, --partition=part)

 requests nodes only from the part partition (the default partition is assigned by the
system administrator on each separate LC machine).

-t min (lowercase, --time=min)

 allocates a total of min minutes for this job to run (default is the current partition's
time limit). If min exceeds the partition's time limit, then the job never leaves the
PENDING state. When the time limit has been reached, SLURM sends each job
process SIGTERM followed (after a pause specified by SLURM's KillWait
configuration parameter) by SIGKILL.

-T nthreads (uppercase, --threads=nthreads)

 requests that SRUN allocate nthreads threads to initiate and control the parallel tasks
in this job (default is the smaller of 10 or the number of nodes actually allocated,
SLURM_NNODES).

SLURM Reference Manual - 21

SRUN Control Options

[Details coming soon.]

SRUN I/O Options

[Details coming soon.]

SRUN Constraint Options

[Details coming soon.]

SLURM Reference Manual - 22

Environment Variables

Many SRUN options have corresponding environment variables (analogous to the approach used with
POE). The SRUN option, if invoked, always overrides (resets) the corresponding environment variable
(which contains each job feature's default value, if there is a default).

In addition, SRUN sets these environment variables for each executing task on the remote compute
nodes:

SLURM_JOBID

 specifies the job ID of the executing job.

SLURM_NODEID

 specifies the relative node ID of the current node.

SLURM_NODELIST

 specifies the list of nodes on which the job is actually running.

SLURM_NPROCS

 specifies the total number of processes in the job.

SLURM_PROCID

 specifies the MPI rank (or relative process ID) for the current process.

SLURM Reference Manual - 23

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2003 The Regents of the University of California. All rights reserved.

SLURM Reference Manual - 24

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 26).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where SLURM runs.
who Who to contact for assistance.

introduction Overview of SLURM features, comparisons.

slurm-strategy Special benefits built into SLURM.
 slurm-goals SLURM design goals as resource manager.
 slurm-roles RMS, NQS, DPCS, SLURM compared.

slurm-features How SLURM works.
 slurm-components Software units comprising SLURM.
 slurmctld SLURMCTLD control daemon explained.
 slurmd SLURMD local daemon explained.
 portability How plugin modules make SLURM adaptable.
 user-impact SLURM's effect on typical jobs.

slurm-operation User interaction with SLURM.
 slurm-utilities SLURM's direct user utility programs.
 srun Job-submittal and resource utility.
 srun-roles SRUN roles and modes compared.
 poe-comparison SRUN and (IBM) POE differences.
 run-mode-options Enabling different job-run alternatives.
 resource-allocation Assigning compute resources to jobs.
 control-options Managing general job features.
 i-o-options Handling job input, output, errors.
 constraint-options Specifying job constraints.
 environment-variables SRUN environment variables defined.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

SLURM Reference Manual - 25

Alphabetical List of Keywords

Keyword Description
------- -----------
a The alphabetical index of keywords.
availability Where SLURM runs.
constraint-options Specifying job constraints.
control-options Managing general job features.
date The latest changes to this document.
entire This entire document.
environment-variables SRUN environment variables defined.
i-o-options Handling job input, output, errors.
index The structural index of keywords.
introduction Overview of SLURM features, comparisons.
poe-comparison SRUN and (IBM) POE differences.
portability How plugin modules make SLURM adaptable.
resource-allocation Assigning compute resources to jobs.
revisions The complete revision history.
run-mode-options Enabling different job-run alternatives.
scope Topics covered in this document.
slurm-components Software units comprising SLURM.
slurm-features How SLURM works.
slurm-goals SLURM design goals as resource manager.
slurm-operation User interaction with SLURM.
slurm-roles RMS, NQS, DPCS, SLURM compared.
slurm-strategy Special benefits built into SLURM.
slurm-utilities SLURM's direct user utility programs.
slurmctld SLURMCTLD control daemon explained.
slurmd SLURMD local daemon explained.
srun Job-submittal and resource utility.
srun-roles SRUN roles and modes compared.
title The name of this document.
user-impact SLURM's effect on typical jobs.
who Who to contact for assistance.

SLURM Reference Manual - 26

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
21Oct03 srun Major SRUN features, options explained.
 introduction SRUN's central role introduced.
 index Nine new keywords for new sections.

20Aug03 entire Draft edition of SLURM manual.

TRG (21Oct03)

UCRL-WEB-201386
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (21Oct03) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

SLURM Reference Manual - 27

http://www.llnl.gov/disclaimer.html

